We study zero-dimensional fat points schemes on a smooth quadric Q congruent to P^1 x P^1, and we characterize those schemes which are arithmetically Cohen-Macaulay (aCM for short) as sub-schemes of Q giving their Hilbert matrix and bigraded Betti numbers. In particular, we can compute the Hilbert matrix and the bigraded Betti numbers for fat points schemes with homogeneous multiplicities and whose support is a complete intersection (CI for short). Moreover, we find a minimal set of generators for schemes of double points whose support is aCM. (C) 2001 Elsevier Science B.V. All rights reserved.
Titolo: | Fat Points Schemes on a smooth quadric |
Autori interni: | |
Data di pubblicazione: | 2001 |
Rivista: | |
Handle: | http://hdl.handle.net/20.500.11769/3217 |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.