The aim of this work is the encapsulation of essential oils (EOs) in polymeric nanocapsules (NCs), in order to enhance their antimicrobial activity against food-borne pathogens. Thymus capitatus and Origanum vulgare EOs were selected for their different chemical composition, carvacrol (73%) and thymol (44%) being the major constituent, respectively. Polymeric poly(ɛ-caprolactone) (PCL) nanocapsules loaded with EOs were prepared by a nanoprecipitation method. The EO-NCs showed monomodal distribution with diameter size 171 and 175 nm, high efficiency of encapsulation and stability with high retention of EOs at both 4 °C and 40 °C, for a period of at least 30 days. The antimicrobial activity of EO-NCs against food-borne pathogens was higher than that of the corresponding pure essential oils and the NCs loaded with Thymus capitatus EO were the most active. Interestingly EO-NCs showed a bactericidal activity even at the minimum inhibitory concentrations (MICs). It makes them appealing as natural food preservatives.

Essential oils encapsulated in polymer-based nanocapsules as potential candidates for application in food preservation

STRACQUADANIO, STEFANO;NAPOLI, Edoardo Marco;Cafiso, Viviana;Stefani, Stefania;
2018-01-01

Abstract

The aim of this work is the encapsulation of essential oils (EOs) in polymeric nanocapsules (NCs), in order to enhance their antimicrobial activity against food-borne pathogens. Thymus capitatus and Origanum vulgare EOs were selected for their different chemical composition, carvacrol (73%) and thymol (44%) being the major constituent, respectively. Polymeric poly(ɛ-caprolactone) (PCL) nanocapsules loaded with EOs were prepared by a nanoprecipitation method. The EO-NCs showed monomodal distribution with diameter size 171 and 175 nm, high efficiency of encapsulation and stability with high retention of EOs at both 4 °C and 40 °C, for a period of at least 30 days. The antimicrobial activity of EO-NCs against food-borne pathogens was higher than that of the corresponding pure essential oils and the NCs loaded with Thymus capitatus EO were the most active. Interestingly EO-NCs showed a bactericidal activity even at the minimum inhibitory concentrations (MICs). It makes them appealing as natural food preservatives.
2018
Antimicrobial activity; Essential oils; Food-borne pathogens; Natural food preservative; Polycaprolactone nanocapsule; Analytical Chemistry; Food Science
File in questo prodotto:
File Dimensione Formato  
Essential oils encapsulated in polymer-based nanocapsules.pdf

solo gestori archivio

Tipologia: Versione Editoriale (PDF)
Dimensione 504.09 kB
Formato Adobe PDF
504.09 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/335172
Citazioni
  • ???jsp.display-item.citation.pmc??? 18
  • Scopus 100
  • ???jsp.display-item.citation.isi??? 95
social impact