Development of new analgesics endowed with mu/delta opioid receptor (MOR/DOR) activity represents a promising alternative to MOR selective compounds because of their better therapeutic and tolerability profile. Lately, we have synthetized the MOR/DOR agonist LP2 that showed a long lasting antinociceptive activity in the tail flick test, an acute pain model. Here, we investigate whether LP2 is also effective in the mouse formalin test, a model of inflammatory pain sustained by mechanisms of central sensitization. Moreover, we evaluated a possible peripheral component of LP2 analgesic activity. Different doses of LP2 were tested after either intraperitoneal (i.p.) or intraplantar (i.pl.) administration. LP2 (0.75–1.00 mg/kg, i.p.), dose-dependently, counteracted both phases of the formalin test after i.p. administration. The analgesic activity of LP2 (0.75–1.00 mg/kg) was completely blocked by a pretreatment with the opioid antagonist naloxone (3 mg/kg, i.p.). Differently, the pretreatment with naloxone methiodide (5 mg/kg, i.p.), a peripherally restricted opioid antagonist, completely blocked the lower analgesic dose of LP2 (0.75 mg/kg) but only partially relieved the antinociceptive effects of LP2 at the dose of 1.00 mg/kg, thus revealing a peripheral analgesic component of LP2. I.pl. injections of LP2 (10–20 μg/10 μl) were also performed to investigate a possible effect of LP2 on peripheral nerve terminals. Nociceptive sensitization, which occur both at peripheral and central level, is a fundamental step for pain chronicization, thus LP2 is a promising drug for pain conditions characterized by nociceptive sensitization.

Simultaneous targeting of MOR/DOR: A useful strategy for inflammatory pain modulation

Pasquinucci, Lorella
Primo
;
Turnaturi, Rita
;
Montenegro, Lucia;Caraci, Filippo;Chiechio, Santina
Penultimo
;
Parenti, Carmela
Ultimo
2019-01-01

Abstract

Development of new analgesics endowed with mu/delta opioid receptor (MOR/DOR) activity represents a promising alternative to MOR selective compounds because of their better therapeutic and tolerability profile. Lately, we have synthetized the MOR/DOR agonist LP2 that showed a long lasting antinociceptive activity in the tail flick test, an acute pain model. Here, we investigate whether LP2 is also effective in the mouse formalin test, a model of inflammatory pain sustained by mechanisms of central sensitization. Moreover, we evaluated a possible peripheral component of LP2 analgesic activity. Different doses of LP2 were tested after either intraperitoneal (i.p.) or intraplantar (i.pl.) administration. LP2 (0.75–1.00 mg/kg, i.p.), dose-dependently, counteracted both phases of the formalin test after i.p. administration. The analgesic activity of LP2 (0.75–1.00 mg/kg) was completely blocked by a pretreatment with the opioid antagonist naloxone (3 mg/kg, i.p.). Differently, the pretreatment with naloxone methiodide (5 mg/kg, i.p.), a peripherally restricted opioid antagonist, completely blocked the lower analgesic dose of LP2 (0.75 mg/kg) but only partially relieved the antinociceptive effects of LP2 at the dose of 1.00 mg/kg, thus revealing a peripheral analgesic component of LP2. I.pl. injections of LP2 (10–20 μg/10 μl) were also performed to investigate a possible effect of LP2 on peripheral nerve terminals. Nociceptive sensitization, which occur both at peripheral and central level, is a fundamental step for pain chronicization, thus LP2 is a promising drug for pain conditions characterized by nociceptive sensitization.
2019
Mouse formalin test; Multitarget ligands; Naloxone; Naloxone methiodide; Opioid; Pain; Rotarod; Pharmacology
File in questo prodotto:
File Dimensione Formato  
Else_EJP_72172-20190125032354PM.pdf

solo gestori archivio

Descrizione: Articolo principale
Tipologia: Documento in Pre-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.1 MB
Formato Adobe PDF
1.1 MB Adobe PDF   Visualizza/Apri
Simultaneous targeting of MOR_DOR_ A useful strategy for inflammatory pain modulation _ Elsevier Enhanced Reader.pdf

solo gestori archivio

Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 4.35 MB
Formato Adobe PDF
4.35 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/359901
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 16
social impact