We consider a nonlinear Robin problem associated to the p-Laplacian plus an indefinitepotential. In the reaction we have the competing effects of two nonlinear terms. Oneis parametric and strictly ( p − 1)-sublinear. The other is ( p − 1)-linear. We prove abifurcation-type theorem describing the dependence of the set of positive solutions onthe parameter λ>0. We also show that for every admissible parameter the problem hasa smallest positive solution ¯uλand we study monotonicity and continuity propertiesof the map λ →¯uλ.
Titolo: | Positive solutions for nonlinear Robin problems with indefinite potential and competing nonlinearities | |
Autori interni: | ||
Data di pubblicazione: | 2020 | |
Rivista: | ||
Handle: | http://hdl.handle.net/20.500.11769/362184 | |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.