Thanks to the forgiving nature of the emerging recognition, mining and synthesis applications, approximate computing (AC) has been recently rediscovered as a viable technique for improving the performance of computing systems. Although the application of AC techniques has, in several cases, an indirect positive effect on the performance of the on-chip communication sub-system, there are only few works aimed at proposing AC techniques specifically designed to improve the efficiency of the on-chip communication fabric. This paper introduces the concept of approximate communication in the context of wireless network-on-chip (WiNoC) architectures. This paper presents a technique through which the programmer can annotate those data structures of an application that, whenever affected by errors, do not impact the functionality of the application itself but only the quality of its outputs. Based on this annotation, the communications induced by the access to such data structures are realized with a reduced energy effort that, however, results to an increase of the probability for the data to be affected by errors. The underlying hardware mechanisms enabling the energy versus reliability trade-off are based on the dynamic link voltage swing and on the dynamic transmitting power tuning of the wired links and wireless transmissions, respectively. Both the hardware and software components needed for supporting the proposed technique are presented. The technique is assessed on a set of representative benchmarks and the energy saving vs. application output quality is discussed.

Approximate Wireless Networks-on-Chip

Ascia, Giuseppe;Catania, Vincenzo;Monteleone, Salvatore
;
Palesi, Maurizio;Patti, Davide;
2019-01-01

Abstract

Thanks to the forgiving nature of the emerging recognition, mining and synthesis applications, approximate computing (AC) has been recently rediscovered as a viable technique for improving the performance of computing systems. Although the application of AC techniques has, in several cases, an indirect positive effect on the performance of the on-chip communication sub-system, there are only few works aimed at proposing AC techniques specifically designed to improve the efficiency of the on-chip communication fabric. This paper introduces the concept of approximate communication in the context of wireless network-on-chip (WiNoC) architectures. This paper presents a technique through which the programmer can annotate those data structures of an application that, whenever affected by errors, do not impact the functionality of the application itself but only the quality of its outputs. Based on this annotation, the communications induced by the access to such data structures are realized with a reduced energy effort that, however, results to an increase of the probability for the data to be affected by errors. The underlying hardware mechanisms enabling the energy versus reliability trade-off are based on the dynamic link voltage swing and on the dynamic transmitting power tuning of the wired links and wireless transmissions, respectively. Both the hardware and software components needed for supporting the proposed technique are presented. The technique is assessed on a set of representative benchmarks and the energy saving vs. application output quality is discussed.
2019
9781728101712
Approximate communication; energy saving; wireless network-on-chip; Computer Networks and Communications; Electrical and Electronic Engineering
File in questo prodotto:
File Dimensione Formato  
C24_DCIS2018_Mau.pdf

solo gestori archivio

Tipologia: Versione Editoriale (PDF)
Dimensione 433.9 kB
Formato Adobe PDF
433.9 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/364038
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? ND
social impact