A new sequence of eruptions occurred at Mt. Etna volcano during the first half of 2017, after almost 8 months of quiescence. These episodes had low-to-mild intensity and markedly differ from the violent paroxysms occurred at the Voragine Crater (VOR) during December 2015 and May 2016. Despite the general weak explosive nature of the eruptions, the activity during 2017 revealed unusually complex dynamics of magma ascent and interaction. Detection and investigation of such dynamics required a multidisciplinary approach in which bulk rock compositions, crystal chemical zoning, diffusion chronometry and ground deformation data have been combined. Bulk rock major and trace elements suggest that the 2017 magmas followed a differentiation path similar to that experienced by magmas erupted at Mt. Etna during the 2015–16 eruptions at VOR. Olivine core compositions and zoning patterns indicate the presence of multiple magmatic environments at depth that strictly interacted each other through some episodes of intrusion and mixing before and during the 2017 eruptive events. Timescales retrieved from diffusion chronometry on olivine normal and reverse zoning correlate well with the ground deformation stages detected through geodetic data and associated models, thus allowing to track the evolution through time of the 2017 volcanic activity. Combination of all petrological and geodetic observations supports the idea that dynamics of magma transfer driving the eruptive episodes of 2017 have been a direct consequence of the violent eruptions occurred at VOR on May 2016, which boosted the ascent of new magma from depth and improved the efficiency of the plumbing system to transfer it upward to the surface. We propose a mechanism of self-feeding replenishment of the volcano plumbing system during 2017, where magma recharge from depth is triggered by sudden unloading of the magma column consequential to the violent paroxysmal activity occurred on May 2016 at VOR.

Violent paroxysmal activity drives self-feeding magma replenishment at Mt. Etna

Viccaro M.
;
Giuffrida M.;Zuccarello F.;Palano M.;Gresta S.
2019

Abstract

A new sequence of eruptions occurred at Mt. Etna volcano during the first half of 2017, after almost 8 months of quiescence. These episodes had low-to-mild intensity and markedly differ from the violent paroxysms occurred at the Voragine Crater (VOR) during December 2015 and May 2016. Despite the general weak explosive nature of the eruptions, the activity during 2017 revealed unusually complex dynamics of magma ascent and interaction. Detection and investigation of such dynamics required a multidisciplinary approach in which bulk rock compositions, crystal chemical zoning, diffusion chronometry and ground deformation data have been combined. Bulk rock major and trace elements suggest that the 2017 magmas followed a differentiation path similar to that experienced by magmas erupted at Mt. Etna during the 2015–16 eruptions at VOR. Olivine core compositions and zoning patterns indicate the presence of multiple magmatic environments at depth that strictly interacted each other through some episodes of intrusion and mixing before and during the 2017 eruptive events. Timescales retrieved from diffusion chronometry on olivine normal and reverse zoning correlate well with the ground deformation stages detected through geodetic data and associated models, thus allowing to track the evolution through time of the 2017 volcanic activity. Combination of all petrological and geodetic observations supports the idea that dynamics of magma transfer driving the eruptive episodes of 2017 have been a direct consequence of the violent eruptions occurred at VOR on May 2016, which boosted the ascent of new magma from depth and improved the efficiency of the plumbing system to transfer it upward to the surface. We propose a mechanism of self-feeding replenishment of the volcano plumbing system during 2017, where magma recharge from depth is triggered by sudden unloading of the magma column consequential to the violent paroxysmal activity occurred on May 2016 at VOR.
File in questo prodotto:
File Dimensione Formato  
2019_SciRep_Etna.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Dimensione 6.31 MB
Formato Adobe PDF
6.31 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.11769/364655
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
social impact