We introduce a new type of Hessian matrix, that we call Mixed Hessian. The mixed Hessian is used to compute the rank of a multiplication map by a power of a linear form in a standard graded Artinian Gorenstein algebra. In particular we recover the main result of a paper by Maeno and Watanabe for identifying Strong Lefschetz elements, generalizing it also for Weak Lefschetz elements. This criterion is also used to give a new proof that Boolean algebras have the Strong Lefschetz Property. We also construct new examples of Artinian Gorenstein algebras presented by quadrics that does not satisfy the Weak Lefschetz Property; we construct minimal examples of such algebras and we give bounds, depending on the degree, for their existence. Artinian Gorenstein algebras presented by quadrics were conjectured to satisfy WLP in two papers by Migliore and Nagel, and in a previous paper we constructed the first counter-examples.

On mixed Hessians and the Lefschetz properties

Zappalà, Giuseppe
2019

Abstract

We introduce a new type of Hessian matrix, that we call Mixed Hessian. The mixed Hessian is used to compute the rank of a multiplication map by a power of a linear form in a standard graded Artinian Gorenstein algebra. In particular we recover the main result of a paper by Maeno and Watanabe for identifying Strong Lefschetz elements, generalizing it also for Weak Lefschetz elements. This criterion is also used to give a new proof that Boolean algebras have the Strong Lefschetz Property. We also construct new examples of Artinian Gorenstein algebras presented by quadrics that does not satisfy the Weak Lefschetz Property; we construct minimal examples of such algebras and we give bounds, depending on the degree, for their existence. Artinian Gorenstein algebras presented by quadrics were conjectured to satisfy WLP in two papers by Migliore and Nagel, and in a previous paper we constructed the first counter-examples.
Gorenstein algebras, Hessian matrix, Lefschetz properties
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.11769/365727
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact