Non-enzymatic electrochemical glucose sensing was obtained by gold nanostructures on graphene paper, produced by laser or thermal dewetting of 1.6 and 8 nm-thick Au layers, respectively. Nanosecond laser annealing produces spherical nanoparticles (AuNPs) through the molten-phase dewetting of the gold layer and simultaneous exfoliation of the graphene paper. The resulting composite electrodes were characterized by X-ray photoelectron spectroscopy, cyclic voltammetry, scanning electron microscopy, micro Raman spectroscopy and Rutherford back-scattering spectrometry. Laser dewetted electrode presents graphene nanoplatelets covered by spherical AuNPs. The sizes of AuNPs are in the range of 10-150 nm. A chemical shift in the XPS Au4f core-level of 0.25-0.3 eV suggests the occurrence of AuNPs oxidation, which are characterized by high stability under the electrochemical test. Thermal dewetting leads to electrodes characterized by faceted not oxidized gold structures. Glucose was detected in alkali media at potential of 0.15-0.17 V vs. saturated calomel electrode (SCE), in the concentration range of 2.5μM-30 mM, exploiting the peak corresponding to the oxidation of two electrons. Sensitivity of 1240 µA mM-1 cm-2, detection limit of 2.5 μM and quantifications limit of 20 μM were obtained with 8 nm gold equivalent thickness. The analytical performances are very promising and comparable to the actual state of art concerning gold based electrodes.

Dewetted Gold Nanostructures onto Exfoliated Graphene Paper as High Efficient Glucose Sensor

Scandurra, Antonino
Membro del Collaboration Group
;
Ruffino, Francesco
Membro del Collaboration Group
;
Censabella, Maria
Membro del Collaboration Group
;
Terrasi, Antonio
Membro del Collaboration Group
;
Grimaldi, Maria Grazia
Membro del Collaboration Group
2019-01-01

Abstract

Non-enzymatic electrochemical glucose sensing was obtained by gold nanostructures on graphene paper, produced by laser or thermal dewetting of 1.6 and 8 nm-thick Au layers, respectively. Nanosecond laser annealing produces spherical nanoparticles (AuNPs) through the molten-phase dewetting of the gold layer and simultaneous exfoliation of the graphene paper. The resulting composite electrodes were characterized by X-ray photoelectron spectroscopy, cyclic voltammetry, scanning electron microscopy, micro Raman spectroscopy and Rutherford back-scattering spectrometry. Laser dewetted electrode presents graphene nanoplatelets covered by spherical AuNPs. The sizes of AuNPs are in the range of 10-150 nm. A chemical shift in the XPS Au4f core-level of 0.25-0.3 eV suggests the occurrence of AuNPs oxidation, which are characterized by high stability under the electrochemical test. Thermal dewetting leads to electrodes characterized by faceted not oxidized gold structures. Glucose was detected in alkali media at potential of 0.15-0.17 V vs. saturated calomel electrode (SCE), in the concentration range of 2.5μM-30 mM, exploiting the peak corresponding to the oxidation of two electrons. Sensitivity of 1240 µA mM-1 cm-2, detection limit of 2.5 μM and quantifications limit of 20 μM were obtained with 8 nm gold equivalent thickness. The analytical performances are very promising and comparable to the actual state of art concerning gold based electrodes.
2019
glucose sensing; gold nanoparticles; graphene paper; thermal and laser dewetting
File in questo prodotto:
File Dimensione Formato  
Scandurra_nanomaterials_2019.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Dimensione 3.95 MB
Formato Adobe PDF
3.95 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/374252
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 12
social impact