The paper deals with the regularity criteria for the weak solutions to the 3D Boussinesq equations in terms of the partial derivatives in Besov spaces. It is proved that the weak solution ((u, heta )) becomes regular provided that $$egin{aligned} ( abla _{h}{widetilde{u}}, abla _{h} heta )in L^{1}(0,T;overset{cdot }{B }_{infty ,infty }^{0}({mathbb {R}}^{3})) end{aligned}$$

A Regularity Criterion of Weak Solutions to the 3D Boussinesq Equations

Ragusa, Maria Alessandra
2020

Abstract

The paper deals with the regularity criteria for the weak solutions to the 3D Boussinesq equations in terms of the partial derivatives in Besov spaces. It is proved that the weak solution ((u, heta )) becomes regular provided that $$egin{aligned} ( abla _{h}{widetilde{u}}, abla _{h} heta )in L^{1}(0,T;overset{cdot }{B }_{infty ,infty }^{0}({mathbb {R}}^{3})) end{aligned}$$
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.11769/375726
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact