We prove that the space of radical ideals of a ring R, endowed with the hull-kernel topology, is a spectral space, and that it is canonically homeomorphic to the space of the non-empty Zariski closed subspaces of Spec(R), endowed with a Zariski-like topology.
A topological version of Hilbert's Nullstellensatz
Finocchiaro C. A.;
2016-01-01
Abstract
We prove that the space of radical ideals of a ring R, endowed with the hull-kernel topology, is a spectral space, and that it is canonically homeomorphic to the space of the non-empty Zariski closed subspaces of Spec(R), endowed with a Zariski-like topology.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
1605.03105.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
PUBBLICO - Pubblico con Copyright
Dimensione
231.21 kB
Formato
Adobe PDF
|
231.21 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.