The geometry of surrounding water molecules on the side chain of glycine, alanine, α-aminoisobutyric acid, α-aminobutyric acid, valine, and related hydrocarbons has been analyzed combining bottom-up and quantum chemical methodologies. To minimize the cavity size and to prevent water-water hydrogen bonding loss, the water molecules adopt a shape, resembling the one found in crystal structure of gas clathrate hydrates, with water molecules tangentially oriented to the surface of hydrophobic side chain. The cage is directly hydrogen bonded to the backbone's polar groups, thus hydration shells around hydrophobic and hydrophilic groups are folded together in amphiphilic molecules. The hydrophobe enclathration implies a substantial freedom degree reduction which makes it entropically disfavored. This disadvantageous entropic contribution is partially compensated by the favorable van der Waals interactions with guest in stabilizing clathrate hydrate formation. The water shell around the side chain relates intimately with the side-chain rotational isomerism. Present data are correlated with the experimental determined populations of the three rotamers, yielding promising results for both α-aminobutyric acid and valine.

The water molecule arrangement over the side chain of some aliphatic amino acids: A quantum chemical and bottom-up investigation

Lanza G.
Primo
Supervision
;
Chiacchio M. A.
Data Curation
2020-01-01

Abstract

The geometry of surrounding water molecules on the side chain of glycine, alanine, α-aminoisobutyric acid, α-aminobutyric acid, valine, and related hydrocarbons has been analyzed combining bottom-up and quantum chemical methodologies. To minimize the cavity size and to prevent water-water hydrogen bonding loss, the water molecules adopt a shape, resembling the one found in crystal structure of gas clathrate hydrates, with water molecules tangentially oriented to the surface of hydrophobic side chain. The cage is directly hydrogen bonded to the backbone's polar groups, thus hydration shells around hydrophobic and hydrophilic groups are folded together in amphiphilic molecules. The hydrophobe enclathration implies a substantial freedom degree reduction which makes it entropically disfavored. This disadvantageous entropic contribution is partially compensated by the favorable van der Waals interactions with guest in stabilizing clathrate hydrate formation. The water shell around the side chain relates intimately with the side-chain rotational isomerism. Present data are correlated with the experimental determined populations of the three rotamers, yielding promising results for both α-aminobutyric acid and valine.
2020
amino acid side chain; clathrate hydrates; DFT; hydrogen bond; hydrophobic effect
File in questo prodotto:
File Dimensione Formato  
2020_Int_J_Quan_Chem.pdf

solo utenti autorizzati

Descrizione: Articolo principale in formato preprint
Tipologia: Documento in Pre-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.27 MB
Formato Adobe PDF
1.27 MB Adobe PDF   Visualizza/Apri
The water molecule arrangement over the side chain of some aliphatic amino acids_ A quantum chemical and bottom‐up investigation.pdf

solo gestori archivio

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 3.48 MB
Formato Adobe PDF
3.48 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/423839
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact