Solder reliability is a key aspect for the packaging of low voltage power semiconductor device. The interconnections among package components, e.g. the silicon chip and copper leadframe, and between package itself and the external printed control board (PCB) should be properly designed to ensure the automotive durability requirements. In this framework, the proposed paper introduces an experimental-numeric characterization flow with the purpose to analyze solder visco-plasticity and fatigue during passive temperature cycle. The presented methodology has included solder mechanical characterization aimed to determine the parameters of Anand model which reproduces the solder visco-plastic behavior and the mechanical properties’ temperature dependency. Finite element model has been employed to calculate the inelastic work which solder dissipates during each temperature cycle. Simulation results serve as input to predict solder lifetime according to an energetic method. Moreover, failure analyses have been performed to assess the failure mechanism and to check model correlation in terms of number of cycles to failure forecast.

Power semiconductor devices and packages: solder mechanical characterization and lifetime prediction

Sitta A.;Oliveri S. M.;Sequenzia G.
Ultimo
2021-01-01

Abstract

Solder reliability is a key aspect for the packaging of low voltage power semiconductor device. The interconnections among package components, e.g. the silicon chip and copper leadframe, and between package itself and the external printed control board (PCB) should be properly designed to ensure the automotive durability requirements. In this framework, the proposed paper introduces an experimental-numeric characterization flow with the purpose to analyze solder visco-plasticity and fatigue during passive temperature cycle. The presented methodology has included solder mechanical characterization aimed to determine the parameters of Anand model which reproduces the solder visco-plastic behavior and the mechanical properties’ temperature dependency. Finite element model has been employed to calculate the inelastic work which solder dissipates during each temperature cycle. Simulation results serve as input to predict solder lifetime according to an energetic method. Moreover, failure analyses have been performed to assess the failure mechanism and to check model correlation in terms of number of cycles to failure forecast.
2021
Fatigue
Finite Element Model
Material Characterization
Mathematical model
Power Semiconductor Package
Predictive models
Reliability
Sensitivity
Strain
Stress
Temperature
File in questo prodotto:
File Dimensione Formato  
Calabretta et al. 2021_first_online.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Dimensione 2.29 MB
Formato Adobe PDF
2.29 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/502356
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? ND
social impact