Background The term Pontocerebellar hypoplasias collectively refers to a group of rare, heterogeneous and progressive disorders, which are frequently inherited in an autosomal recessive manner and usually have a prenatal onset. Mutations in the SEPSECS gene, leading to deficiency in selenoprotein biosynthesis, have been identified in recent times as the molecular etiology of different pre/perinatal onset neurological phenotypes, including cerebello-cerebral atrophy, Pontocerebellar hypoplasia type 2D and progressive encephalopathy with elevated lactate. These disorders share a similar spectrum of central (e.g., brain neurodegeneration with grey and white matter both involved) and peripheral (e.g., spasticity due to axonal neuropathy) nervous system impairment. Case presentation We hereby describe a 9-year-old boy with (i) a typical Pontocerebellar hypoplasia type 2D phenotype (e.g. profound mental retardation, spastic quadriplegia, ponto-cerebellar hypoplasia and progressive cerebral atrophy); (ii) optic nerve atrophy and (iii) mild secondary mitochondrial myopathy detected by muscle biopsy and respiratory chain enzyme analysis. We performed whole exome sequencing which identified a homozygous mutation of the SEPSECS gene (c.1001T > C), confirming the clinical suspect of Pontocerebellar hypoplasia type 2D. Conclusion This report further corroborates the notion of a potential secondary mitochondrial dysfunction in the context of selenoprotein biosynthesis deficiency and also adds optic nerve atrophy as a new potential clinical feature within the SEPSECS-associated clinical spectrum. These findings suggest the presence of a possible shared genetic etiology among similar clinical entities characterized by the combination of progressive cerebello-cerebral and optic nerve atrophy and also stress the biological importance of selenoproteins in the regulation of neuronal and metabolic homeostasis. © 2016 European Paediatric Neurology Society.

Pontocerebellar Hypoplasia type 2D and optic nerve atrophy further expand the spectrum associated with selenoprotein biosynthesis deficiency

RUGGIERI, MARTINO;
2016-01-01

Abstract

Background The term Pontocerebellar hypoplasias collectively refers to a group of rare, heterogeneous and progressive disorders, which are frequently inherited in an autosomal recessive manner and usually have a prenatal onset. Mutations in the SEPSECS gene, leading to deficiency in selenoprotein biosynthesis, have been identified in recent times as the molecular etiology of different pre/perinatal onset neurological phenotypes, including cerebello-cerebral atrophy, Pontocerebellar hypoplasia type 2D and progressive encephalopathy with elevated lactate. These disorders share a similar spectrum of central (e.g., brain neurodegeneration with grey and white matter both involved) and peripheral (e.g., spasticity due to axonal neuropathy) nervous system impairment. Case presentation We hereby describe a 9-year-old boy with (i) a typical Pontocerebellar hypoplasia type 2D phenotype (e.g. profound mental retardation, spastic quadriplegia, ponto-cerebellar hypoplasia and progressive cerebral atrophy); (ii) optic nerve atrophy and (iii) mild secondary mitochondrial myopathy detected by muscle biopsy and respiratory chain enzyme analysis. We performed whole exome sequencing which identified a homozygous mutation of the SEPSECS gene (c.1001T > C), confirming the clinical suspect of Pontocerebellar hypoplasia type 2D. Conclusion This report further corroborates the notion of a potential secondary mitochondrial dysfunction in the context of selenoprotein biosynthesis deficiency and also adds optic nerve atrophy as a new potential clinical feature within the SEPSECS-associated clinical spectrum. These findings suggest the presence of a possible shared genetic etiology among similar clinical entities characterized by the combination of progressive cerebello-cerebral and optic nerve atrophy and also stress the biological importance of selenoproteins in the regulation of neuronal and metabolic homeostasis. © 2016 European Paediatric Neurology Society.
2016
Pontocerebellar hypoplasia; SEPSECS; Selenoprotein biosynthesis deficiency; Optic nerve atrophy; Mitochondrial myopathy
File in questo prodotto:
File Dimensione Formato  
Pontocerebellar hypoplasia.pdf

solo gestori archivio

Tipologia: Versione Editoriale (PDF)
Dimensione 1.64 MB
Formato Adobe PDF
1.64 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/50306
Citazioni
  • ???jsp.display-item.citation.pmc??? 12
  • Scopus 53
  • ???jsp.display-item.citation.isi??? 48
social impact