This paper reviews state-of-the-art approaches for galvanically isolated DC-DC converters based on radio frequency (RF) micro-transformer coupling. Isolation technology, integration level and fabrication issues are analyzed to highlight the pros and cons of fully integrated (i.e., two chips) and multichip systems-in-package (SiP) implementations. Specifically, two different basic isolation technologies are compared, which exploit thick-oxide integrated and polyimide standalone transformers, respectively. To this aim, previously available results achieved on a fully integrated isolation technology (i.e., thick-oxide integrated transformer) are compared with the experimental performance of a DC-DC converter for 20-V gate driver applications, specifically designed and implemented by exploiting a stand-alone polyimide transformer. The comparison highlights that similar performance in terms of power efficiency can be achieved at lower output power levels (i.e., about 200 mW), while the fully integrated approach is more effective at higher power levels with a better power density. On the other hand, the stand-alone polyimide transformer approach allows higher technology flexibility for the active circuitry while being less expensive and suitable for reinforced isolation.

An Experimental Comparison of Galvanically Isolated DC-DC Converters: Isolation Technology and Integration Approach

Ragonese, Egidio
;
Palmisano, Giuseppe
2021-01-01

Abstract

This paper reviews state-of-the-art approaches for galvanically isolated DC-DC converters based on radio frequency (RF) micro-transformer coupling. Isolation technology, integration level and fabrication issues are analyzed to highlight the pros and cons of fully integrated (i.e., two chips) and multichip systems-in-package (SiP) implementations. Specifically, two different basic isolation technologies are compared, which exploit thick-oxide integrated and polyimide standalone transformers, respectively. To this aim, previously available results achieved on a fully integrated isolation technology (i.e., thick-oxide integrated transformer) are compared with the experimental performance of a DC-DC converter for 20-V gate driver applications, specifically designed and implemented by exploiting a stand-alone polyimide transformer. The comparison highlights that similar performance in terms of power efficiency can be achieved at lower output power levels (i.e., about 200 mW), while the fully integrated approach is more effective at higher power levels with a better power density. On the other hand, the stand-alone polyimide transformer approach allows higher technology flexibility for the active circuitry while being less expensive and suitable for reinforced isolation.
2021
basic isolation; electromagnetic coupling; gate drivers; integrated circuits; polyimide; rectifiers; reinforced isolation; Schottky diode; silicon dioxide; system in package; transformers
File in questo prodotto:
File Dimensione Formato  
electronics-10-01186-v2.pdf

accesso aperto

Descrizione: Versione editoriale pubblicata
Tipologia: Versione Editoriale (PDF)
Dimensione 5.5 MB
Formato Adobe PDF
5.5 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/508286
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 12
social impact