In this paper, a novel fractional-order element (FOE) is modeled in a wide frequency range. The FOE is based on a green biopolymer, i.e., bacterial cellulose (BC), infused with ionic liquids (ILs). The modeling is performed in the frequency domain and a lumped-circuit model is proposed. The model is an evolution with respect to a simpler one already introduced by the authors, for a narrower frequency range. Results show that ILs generate a quite complex frequency domain behavior, which can be described in the framework of FOEs. Furthermore, results on the time stability of the device under investigation are given.
Modeling of a Fractional Order Element Based on Bacterial Cellulose and Ionic Liquids
Caponetto, R.
;Graziani, S.;Murgano, E.;Trigona, C.;Pollicino, A.;Di Pasquale, G.
2021-01-01
Abstract
In this paper, a novel fractional-order element (FOE) is modeled in a wide frequency range. The FOE is based on a green biopolymer, i.e., bacterial cellulose (BC), infused with ionic liquids (ILs). The modeling is performed in the frequency domain and a lumped-circuit model is proposed. The model is an evolution with respect to a simpler one already introduced by the authors, for a narrower frequency range. Results show that ILs generate a quite complex frequency domain behavior, which can be described in the framework of FOEs. Furthermore, results on the time stability of the device under investigation are given.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
ds-20-1381.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
Documento in Post-print
Dimensione
3.86 MB
Formato
Adobe PDF
|
3.86 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.