A large number of clathrate-like cages have been proposed as the very first hydration shell of alkanes. The cages include canonical structures commonly found in clathrate hydrates and many others, not previously reported, derived from the carbon fullerene cavities. These structures have a rich and variegated form, which can adapt to the shape and conformation of the solute. They avoid "wasting"hydrogen bonds, while minimizing the volume cage and maximizing the solute-solvent van der Waals interactions. DFT/M06-2X and MP2 ab initio calculations give comparable structural and energetic results although the latter predicts slightly larger cages for a given solute. It is shown that the van der Waals interactions are substantial and the large exoenergetic values found for isobutane and cyclopentane provide an explanation for the surprising high melting points of related hydrates at room pressure. The encaging enthalpy for various hydrocarbons is similar to the enthalpy of solution measured at a temperature just above the melting point of aqueous hydrocarbon solutions, thus indicating that water molecules should not deviate too much from the configuration with O-H bonds tangentially oriented with respect to the solute surface. The computed trend differs from the enthalpy of solution measured at room temperature, thus the very first hydration shell departs, up to a certain degree, from the clathrate-like structures.

On the size, shape and energetics of the hydration shell around alkanes

Lanza G.
Primo
Conceptualization
;
Chiacchio Maria Assunta Rossella
Secondo
Data Curation
2021-01-01

Abstract

A large number of clathrate-like cages have been proposed as the very first hydration shell of alkanes. The cages include canonical structures commonly found in clathrate hydrates and many others, not previously reported, derived from the carbon fullerene cavities. These structures have a rich and variegated form, which can adapt to the shape and conformation of the solute. They avoid "wasting"hydrogen bonds, while minimizing the volume cage and maximizing the solute-solvent van der Waals interactions. DFT/M06-2X and MP2 ab initio calculations give comparable structural and energetic results although the latter predicts slightly larger cages for a given solute. It is shown that the van der Waals interactions are substantial and the large exoenergetic values found for isobutane and cyclopentane provide an explanation for the surprising high melting points of related hydrates at room pressure. The encaging enthalpy for various hydrocarbons is similar to the enthalpy of solution measured at a temperature just above the melting point of aqueous hydrocarbon solutions, thus indicating that water molecules should not deviate too much from the configuration with O-H bonds tangentially oriented with respect to the solute surface. The computed trend differs from the enthalpy of solution measured at room temperature, thus the very first hydration shell departs, up to a certain degree, from the clathrate-like structures.
File in questo prodotto:
File Dimensione Formato  
On the size, shape and energetics of the hydration shell around alkanes.pdf

solo gestori archivio

Descrizione: Articolo
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 3.91 MB
Formato Adobe PDF
3.91 MB Adobe PDF   Visualizza/Apri
d1cp02888j1.pdf

solo gestori archivio

Descrizione: Supporting information
Tipologia: Altro materiale allegato
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.26 MB
Formato Adobe PDF
1.26 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/515757
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact