Background: Deficiency of Conserved Oligomeric Golgi (COG) subunits (COG1-8) is characterized by both N- and O-protein glycosylation defects associated with destabilization and mislocalization of Golgi glycosylation machinery components (COG-CDG). Patients with COG defects present with neurological and multisystem involvement and possible malformation occurrence. Eighteen patients with COG6-CDG (COG6 mutations) were reported to date. We describe a patient with COG6-CDG with novel variants and a novel clinical feature namely a congenital recto-vaginal fistula. Methods: In-depth serum N- and O-glycosylation structural analyses were conducted by MALDI-TOF mass spectrometry. COG6 variants were identified by a gene panel and confirmed by Sanger sequencing. Results: This female newborn presented with facial dysmorphism, distal arthrogryposis and recurrent stool discharges per vaginam. A double-contrast barium-enema X-ray study revealed a dehiscence (approximately 5 mm) at the anterior wall of the rectal ampoule communicating with the vagina consistent with a recto-vaginal fistula. She had developmental delay, corpus callosum dysgenesis, liver and gastrointestinal involvement, hyperthermia episodes and early demise. Serum N- and O-glycosylation analyses pointed to a profound Golgi disarrangement. We identified two novel variants in COG6: a deletion of 1 bp mutation c.823delA creating a shift in the reading frame and a premature stop codon and a 3 bp deletion (c.1141_1143delCTC) producing an in-frame deletion of 1 amino acid. Conclusion: The congenital recto-vaginal fistula is a rare type of anorectal malformation that, to our knowledge, has not been reported in patients with a COG6 defect nor in patients with other COG defects. This study broadens COG6-CDG genetic landscape and spectrum of malformations.

COG6-CDG: Novel variants and novel malformation

Cirnigliaro, Lara;Garozzo, Domenico;Rizzo, Renata;Fiumara, Agata;Barone, Rita
2022-01-01

Abstract

Background: Deficiency of Conserved Oligomeric Golgi (COG) subunits (COG1-8) is characterized by both N- and O-protein glycosylation defects associated with destabilization and mislocalization of Golgi glycosylation machinery components (COG-CDG). Patients with COG defects present with neurological and multisystem involvement and possible malformation occurrence. Eighteen patients with COG6-CDG (COG6 mutations) were reported to date. We describe a patient with COG6-CDG with novel variants and a novel clinical feature namely a congenital recto-vaginal fistula. Methods: In-depth serum N- and O-glycosylation structural analyses were conducted by MALDI-TOF mass spectrometry. COG6 variants were identified by a gene panel and confirmed by Sanger sequencing. Results: This female newborn presented with facial dysmorphism, distal arthrogryposis and recurrent stool discharges per vaginam. A double-contrast barium-enema X-ray study revealed a dehiscence (approximately 5 mm) at the anterior wall of the rectal ampoule communicating with the vagina consistent with a recto-vaginal fistula. She had developmental delay, corpus callosum dysgenesis, liver and gastrointestinal involvement, hyperthermia episodes and early demise. Serum N- and O-glycosylation analyses pointed to a profound Golgi disarrangement. We identified two novel variants in COG6: a deletion of 1 bp mutation c.823delA creating a shift in the reading frame and a premature stop codon and a 3 bp deletion (c.1141_1143delCTC) producing an in-frame deletion of 1 amino acid. Conclusion: The congenital recto-vaginal fistula is a rare type of anorectal malformation that, to our knowledge, has not been reported in patients with a COG6 defect nor in patients with other COG defects. This study broadens COG6-CDG genetic landscape and spectrum of malformations.
2022
COG6
combined N- and O-glycosylation defect
congenital ano-rectal malformations
congenital disorder of glycosylation (CDG)
corpus callosum dysgenesis
File in questo prodotto:
File Dimensione Formato  
COG6BDR-2022.pdf

accesso aperto

Descrizione: articolo principale
Tipologia: Versione Editoriale (PDF)
Dimensione 4.46 MB
Formato Adobe PDF
4.46 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/519377
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact