This paper aims to synthesize, via the sol–gel method, a biomaterial usable in the medical field. Here, the silica-PEG-quercetin system was evaluated in relation to the different concentrations of PEG (0, 6, 12, 24, 50 wt%) and quercetin (0, 5, 10, 15 wt%), respectively. In addition, Fourier Transform-Infrared spectroscopy (FT-IR), Scanning Electron Microscopy (SEM), and Kirby–Bauer analyses were performed. FT-IR was used to evaluate the hybrid formation and the influence of both PEG and Quercetin in the hybrid synthesized materials, SEM was used to evaluate the morphological properties, while the Kirby–Bauer test was used to understand the ability of the materials to inhibit the growth of the assayed bacterial strains (Escherichia coli, Pseudomonas aeruginosa, Enterococcus faecalis, and Staphylococcus aureus).

Antibacterial and Chemical Characterization of Silica-Quercetin-PEG Hybrid Materials Synthesized by Sol–Gel Route

Blanco Ignazio;Latteri Alberta;Cicala Gianluca;
2022-01-01

Abstract

This paper aims to synthesize, via the sol–gel method, a biomaterial usable in the medical field. Here, the silica-PEG-quercetin system was evaluated in relation to the different concentrations of PEG (0, 6, 12, 24, 50 wt%) and quercetin (0, 5, 10, 15 wt%), respectively. In addition, Fourier Transform-Infrared spectroscopy (FT-IR), Scanning Electron Microscopy (SEM), and Kirby–Bauer analyses were performed. FT-IR was used to evaluate the hybrid formation and the influence of both PEG and Quercetin in the hybrid synthesized materials, SEM was used to evaluate the morphological properties, while the Kirby–Bauer test was used to understand the ability of the materials to inhibit the growth of the assayed bacterial strains (Escherichia coli, Pseudomonas aeruginosa, Enterococcus faecalis, and Staphylococcus aureus).
sol–gel method; hybrids materials; anti-bacterial properties; FT-IR; SEM
File in questo prodotto:
File Dimensione Formato  
137.pdf

accesso aperto

Descrizione: articolo principale
Tipologia: Versione Editoriale (PDF)
Dimensione 5.07 MB
Formato Adobe PDF
5.07 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/519879
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact