Low-molecular-weight, aspartic-acid-rich proteins (ASP-RICH) have been assumed to be involved in the self-incompatibility process of clementine. The role of ASP-RICH is not known, but hypothetically they could sequester calcium ions (Ca2+) and affect Ca2+-dependent mechanisms. In this article, we analyzed the effects induced by clementine ASP-RICH proteins (CcASP-RICH) when expressed in the tobacco heterologous system, focusing on the male gametophyte. The aim was to gain insight into the mechanism of action of ASP-RICH in a well-known cellular system, i.e., the pollen tube. Pollen tubes of tobacco transgenic lines expressing CcASP-RICH were analyzed for Ca2+ distribution, ROS, proton gradient, as well as cytoskeleton and cell wall. CcASP-RICH modulated Ca2+ content and consequently affected cytoskeleton organization and the deposition of cell wall components. In turn, this affected the growth pattern of pollen tubes. Although the expression of CcASP-RICH did not exert a remarkable effect on the growth rate of pollen tubes, effects at the level of growth pattern suggest that the expression of ASP-RICH may exert a regulatory action on the mechanism of plant cell growth.

Expression of Clementine Asp-Rich Proteins (CcASP-RICH) in Tobacco Plants Interferes with the Mechanism of Pollen Tube Growth

Distefano, Gaetano;Gentile, Alessandra;Lo Piero, Angela Roberta;
2022-01-01

Abstract

Low-molecular-weight, aspartic-acid-rich proteins (ASP-RICH) have been assumed to be involved in the self-incompatibility process of clementine. The role of ASP-RICH is not known, but hypothetically they could sequester calcium ions (Ca2+) and affect Ca2+-dependent mechanisms. In this article, we analyzed the effects induced by clementine ASP-RICH proteins (CcASP-RICH) when expressed in the tobacco heterologous system, focusing on the male gametophyte. The aim was to gain insight into the mechanism of action of ASP-RICH in a well-known cellular system, i.e., the pollen tube. Pollen tubes of tobacco transgenic lines expressing CcASP-RICH were analyzed for Ca2+ distribution, ROS, proton gradient, as well as cytoskeleton and cell wall. CcASP-RICH modulated Ca2+ content and consequently affected cytoskeleton organization and the deposition of cell wall components. In turn, this affected the growth pattern of pollen tubes. Although the expression of CcASP-RICH did not exert a remarkable effect on the growth rate of pollen tubes, effects at the level of growth pattern suggest that the expression of ASP-RICH may exert a regulatory action on the mechanism of plant cell growth.
2022
actin filaments, ASP-RICH protein, calcium, cell wall, ROS
File in questo prodotto:
File Dimensione Formato  
ijms-23-07880 ASP-Rich.pdf

accesso aperto

Descrizione: Articolo
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 3.56 MB
Formato Adobe PDF
3.56 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/533937
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact