A variational principle is applied to examine a Muckenhoupt weighted p(·)-Laplacian equation on the Heisenberg groups. We prove the existence of at least one positive radial solution to the problem under the Dirichlet boundary condition belongs to the first order Heisenberg Sobolev spaces.
Existence of positive radial solutions for a problem involving weighted Heisenberg p(·)-Laplacian operator
Maria Alessandra Ragusa
;
2023-01-01
Abstract
A variational principle is applied to examine a Muckenhoupt weighted p(·)-Laplacian equation on the Heisenberg groups. We prove the existence of at least one positive radial solution to the problem under the Dirichlet boundary condition belongs to the first order Heisenberg Sobolev spaces.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
20_FROM_THE_WEB_AIMS_MATHEMATICS_RAGUSA_RAZANI_SAFARI_Existence_of_positive_radial_8_OTT_2022.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
270.75 kB
Formato
Adobe PDF
|
270.75 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.