A variational principle is applied to examine a Muckenhoupt weighted p(·)-Laplacian equation on the Heisenberg groups. We prove the existence of at least one positive radial solution to the problem under the Dirichlet boundary condition belongs to the first order Heisenberg Sobolev spaces.

Existence of positive radial solutions for a problem involving weighted Heisenberg p(·)-Laplacian operator

Maria Alessandra Ragusa
;
2022

Abstract

A variational principle is applied to examine a Muckenhoupt weighted p(·)-Laplacian equation on the Heisenberg groups. We prove the existence of at least one positive radial solution to the problem under the Dirichlet boundary condition belongs to the first order Heisenberg Sobolev spaces.
Heisenberg p(·)-Laplacian operator, variational principle, Muckenhoupt weight function, mountain pass geometry theorem.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/537457
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact