In multiple myeloma (MM), circulating tumor plasma cells (CTPCs) are an emerging prognostic factor, offering a promising and minimally invasive means for longitudinal patient monitoring. Recent advances highlight the complex biology of plasma cell trafficking, highlighting the phenotypic and genetic signatures of intra- and extra-medullary MM onset, making CTPC enumeration and characterization a new frontier of precision medicine for MM patients, requiring novel technological platforms for their standardized and harmonized detection. Dielectrophoresis (DEP) is an emerging label-free cell manipulation technique to separate cancer cells from healthy cells in peripheral blood samples, based on phenotype and membrane capacitance that could be successfully tested to enumerate and isolate CTPCs. Herein, we summarize preclinical data on DEP development for CTPC detection, as well as their clinical and research potential

Label-Free Enrichment of Circulating Tumor Plasma Cells: Future Potential Applications of Dielectrophoresis in Multiple Myeloma

Alessandra Romano;Paolo Giuseppe Bonacci;Grazia Scandura;Massimo Camarda;Giorgio Ivan Russo;Francesco Di Raimondo;Emma Cacciola;Rossella Cacciola
2022-01-01

Abstract

In multiple myeloma (MM), circulating tumor plasma cells (CTPCs) are an emerging prognostic factor, offering a promising and minimally invasive means for longitudinal patient monitoring. Recent advances highlight the complex biology of plasma cell trafficking, highlighting the phenotypic and genetic signatures of intra- and extra-medullary MM onset, making CTPC enumeration and characterization a new frontier of precision medicine for MM patients, requiring novel technological platforms for their standardized and harmonized detection. Dielectrophoresis (DEP) is an emerging label-free cell manipulation technique to separate cancer cells from healthy cells in peripheral blood samples, based on phenotype and membrane capacitance that could be successfully tested to enumerate and isolate CTPCs. Herein, we summarize preclinical data on DEP development for CTPC detection, as well as their clinical and research potential
File in questo prodotto:
File Dimensione Formato  
ROMANO 22 Review.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Dimensione 2 MB
Formato Adobe PDF
2 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/538718
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact