Advances in materials science and technology have prompted researchers to look to nature for new high-performance, low-cost materials. Among these, cyclodextrins have been widely used as a material in industrial applications. Inspired by previous work by our research group that led to the functionalization of cucurbit[6]uryl and its conversion into supramolecular nanospheres with good CO2 adsorption capacity, this work aims to improve the ability of cyclodextrins to capture CO2 by functionalizing them with amide groups. Carbon dioxide adsorption experiments on functionalized cyclodextrins showed an adsorption capacity similar to that of BEA zeolite, a material currently used in the industry for gas adsorption. Moreover, these adsorption properties could also be exploited to improve the adsorption capacity of drugs, a field in which cyclodextrins are widely used. The new cyclodextrin molecules were characterized by nuclear magnetic resonance spectroscopy and mass spectrometry, thanks to which we could determine the degree of functionalization of the new macrocycles. In addition, using Fourier-transform infrared spectroscopy, we demonstrated the presence and interaction of carbon dioxide adsorbed by the material, whereas an in silico study confirmed the chemisorption as the principal adsorption process, as experimentally inferred using the pseudo-second-order (PSO) kinetic model

Carbamoyl-Decorated Cyclodextrins for Carbon Dioxide Adsorption

Vincenzo Patamia
Primo
;
Roberto Fiorenza;Chiara Zagni;Salvatore Scirè;Giuseppe Floresta;Antonio Rescifina
Ultimo
2023-01-01

Abstract

Advances in materials science and technology have prompted researchers to look to nature for new high-performance, low-cost materials. Among these, cyclodextrins have been widely used as a material in industrial applications. Inspired by previous work by our research group that led to the functionalization of cucurbit[6]uryl and its conversion into supramolecular nanospheres with good CO2 adsorption capacity, this work aims to improve the ability of cyclodextrins to capture CO2 by functionalizing them with amide groups. Carbon dioxide adsorption experiments on functionalized cyclodextrins showed an adsorption capacity similar to that of BEA zeolite, a material currently used in the industry for gas adsorption. Moreover, these adsorption properties could also be exploited to improve the adsorption capacity of drugs, a field in which cyclodextrins are widely used. The new cyclodextrin molecules were characterized by nuclear magnetic resonance spectroscopy and mass spectrometry, thanks to which we could determine the degree of functionalization of the new macrocycles. In addition, using Fourier-transform infrared spectroscopy, we demonstrated the presence and interaction of carbon dioxide adsorbed by the material, whereas an in silico study confirmed the chemisorption as the principal adsorption process, as experimentally inferred using the pseudo-second-order (PSO) kinetic model
2023
Advances in materials science and technology have prompted researchers to look to nature for new high-performance, low-cost materials. Among these, cyclodextrins have been widely used as a material in industrial applications. Inspired by previous work by our research group that led to the functionalization of cucurbit[6]uryl and its conversion into supramolecular nanospheres with good CO2 adsorption capacity, this work aims to improve the ability of cyclodextrins to capture CO2 by functionalizing them with amide groups. Carbon dioxide adsorption experiments on functionalized cyclodextrins showed an adsorption capacity similar to that of BEA zeolite, a material currently used in the industry for gas adsorption. Moreover, these adsorption properties could also be exploited to improve the adsorption capacity of drugs, a field in which cyclodextrins are widely used. The new cyclodextrin molecules were characterized by nuclear magnetic resonance spectroscopy and mass spectrometry, thanks to which we could determine the degree of functionalization of the new macrocycles. In addition, using Fourier-transform infrared spectroscopy, we demonstrated the presence and interaction of carbon dioxide adsorbed by the material, whereas an in silico study confirmed the chemisorption as the principal adsorption process, as experimentally inferred using the pseudo-second-order (PSO) kinetic model.
File in questo prodotto:
File Dimensione Formato  
16)Carbamoyl-Decorated Cyclodextrins for CO2.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 3.46 MB
Formato Adobe PDF
3.46 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/546940
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 13
social impact