Filamentous cable bacteria display long-range electron transport, generating electrical currents over centimeter distances through a highly ordered network of fibers embedded in their cell envelope. The conductivity of these periplasmic wires is exceptionally high for a biological material, but their chemical structure and underlying electron transport mechanism remain unresolved. Here, we combine high-resolution microscopy, spectroscopy, and chemical imaging on individual cable bacterium filaments to demonstrate that the periplasmic wires consist of a conductive protein core surrounded by an insulating protein shell layer. The core proteins contain a sulfur-ligated nickel cofactor, and conductivity decreases when nickel is oxidized or selectively removed. The involvement of nickel as the active metal in biological conduction is remarkable, and suggests a hitherto unknown form of electron transport that enables efficient conduction in centimeter-long protein structures. © 2021, The Author(s).

Efficient long-range conduction in cable bacteria through nickel protein wires

Spampinato, V.;
2021-01-01

Abstract

Filamentous cable bacteria display long-range electron transport, generating electrical currents over centimeter distances through a highly ordered network of fibers embedded in their cell envelope. The conductivity of these periplasmic wires is exceptionally high for a biological material, but their chemical structure and underlying electron transport mechanism remain unresolved. Here, we combine high-resolution microscopy, spectroscopy, and chemical imaging on individual cable bacterium filaments to demonstrate that the periplasmic wires consist of a conductive protein core surrounded by an insulating protein shell layer. The core proteins contain a sulfur-ligated nickel cofactor, and conductivity decreases when nickel is oxidized or selectively removed. The involvement of nickel as the active metal in biological conduction is remarkable, and suggests a hitherto unknown form of electron transport that enables efficient conduction in centimeter-long protein structures. © 2021, The Author(s).
File in questo prodotto:
File Dimensione Formato  
Nature_Comm_s41467-021-24312-4.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.18 MB
Formato Adobe PDF
2.18 MB Adobe PDF Visualizza/Apri
Nature_Comm_Supplementary_s41467-021-24312-4.pdf

accesso aperto

Tipologia: Altro materiale allegato
Licenza: Creative commons
Dimensione 2.77 MB
Formato Adobe PDF
2.77 MB Adobe PDF Visualizza/Apri
41467_2021_24312_MOESM5_ESM.xls

accesso aperto

Tipologia: Altro materiale allegato
Licenza: Creative commons
Dimensione 38 kB
Formato Microsoft Excel
38 kB Microsoft Excel Visualizza/Apri
41467_2021_24312_MOESM6_ESM.xls

accesso aperto

Tipologia: Altro materiale allegato
Licenza: Creative commons
Dimensione 34 kB
Formato Microsoft Excel
34 kB Microsoft Excel Visualizza/Apri
41467_2021_24312_MOESM8_ESM.xls

accesso aperto

Tipologia: Altro materiale allegato
Licenza: Creative commons
Dimensione 678 kB
Formato Microsoft Excel
678 kB Microsoft Excel Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/559858
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 53
  • ???jsp.display-item.citation.isi??? 49
social impact