Whiteflies of the Bemisia tabaci species complex are among the most damaging insect pests in agriculture worldwide, causing damage by feeding on crop plants and by vectoring plant viruses. The species complex consists of over 35 cryptic species that differ in many aspects of their biology including the optimal environment, geographic distribution, and host range. Global warming and associated climate change resulting from human activities is expected to contribute to biological invasions. Bemisia tabaci species show fast adaptability to changes in agroecosystems and have a long record of biological invasions. Climate change driven increase in B. tabaci importance in agricultural systems of Europe has been predicted, but so far not experimentally tested. The present study evaluates the development of B. tabaci MED (=Mediterranean) in a climatic chamber simulation of the future climate in Luxembourg, chosen as a representative region for the Central Europe. Future climate predictions for the period 2061-2070 were derived from a multimodel ensemble of physically consistent regional climatic models. Results show a 40% shorter development time of this important pest in future climatic conditions, with an increase in fecundity by a third, and insignificant difference in mortality. Accelerated development, combined with its already established year-round presence in European greenhouses and predicted northward expansion of outdoor tomato production in Europe, means faster population build-up at the beginning of the outdoor cropping season with the potential of reaching economic importance. Benefits of simulating hourly diurnal cycle of physically consistent meteorological variables versus previous experiments are discussed.
Life history parameters of Bemisia tabaci MED (Hemiptera: Aleyrodidae) in the present and future climate of central Europe, predicted by physically realistic climatic chamber simulation
Rapisarda, CarmeloUltimo
2023-01-01
Abstract
Whiteflies of the Bemisia tabaci species complex are among the most damaging insect pests in agriculture worldwide, causing damage by feeding on crop plants and by vectoring plant viruses. The species complex consists of over 35 cryptic species that differ in many aspects of their biology including the optimal environment, geographic distribution, and host range. Global warming and associated climate change resulting from human activities is expected to contribute to biological invasions. Bemisia tabaci species show fast adaptability to changes in agroecosystems and have a long record of biological invasions. Climate change driven increase in B. tabaci importance in agricultural systems of Europe has been predicted, but so far not experimentally tested. The present study evaluates the development of B. tabaci MED (=Mediterranean) in a climatic chamber simulation of the future climate in Luxembourg, chosen as a representative region for the Central Europe. Future climate predictions for the period 2061-2070 were derived from a multimodel ensemble of physically consistent regional climatic models. Results show a 40% shorter development time of this important pest in future climatic conditions, with an increase in fecundity by a third, and insignificant difference in mortality. Accelerated development, combined with its already established year-round presence in European greenhouses and predicted northward expansion of outdoor tomato production in Europe, means faster population build-up at the beginning of the outdoor cropping season with the potential of reaching economic importance. Benefits of simulating hourly diurnal cycle of physically consistent meteorological variables versus previous experiments are discussed.File | Dimensione | Formato | |
---|---|---|---|
Environmental Entomology 2023.pdf
accesso aperto
Descrizione: Articolo
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
334.34 kB
Formato
Adobe PDF
|
334.34 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.