Given coprime positive integers g(1) < ... < g(e), the Frobenius number F = F(g(1),..., g(e)) is the largest integer not representable as a linear combination of g(1),..., g(e) with non-negative integer coefficients. Let n denote the number of all representable non-negative integers less than F; Wilf conjectured that F + 1 <= en. We provide bounds for g1 and for the type of the numerical semigroup S = < g(1),..., g(e)> in function of e and n, and use these bounds to prove that F + 1 <= qen, where q = [F+1/g1], and F + 1 <= en(2). Finally, we give an alternative, simpler proof for theWilf conjecture if the numerical semigroup S = < g(1),..., g(e)> is almost-symmetric.

Bounds for invariants of numerical semigroups and Wilf's conjecture

D'Anna, M
;
Moscariello, A
2023-01-01

Abstract

Given coprime positive integers g(1) < ... < g(e), the Frobenius number F = F(g(1),..., g(e)) is the largest integer not representable as a linear combination of g(1),..., g(e) with non-negative integer coefficients. Let n denote the number of all representable non-negative integers less than F; Wilf conjectured that F + 1 <= en. We provide bounds for g1 and for the type of the numerical semigroup S = < g(1),..., g(e)> in function of e and n, and use these bounds to prove that F + 1 <= qen, where q = [F+1/g1], and F + 1 <= en(2). Finally, we give an alternative, simpler proof for theWilf conjecture if the numerical semigroup S = < g(1),..., g(e)> is almost-symmetric.
2023
Wilf conjecture
Numerical semigroups
Multiplicity
Embedding dimension
Type
Almost symmetric numerical semigroup
File in questo prodotto:
File Dimensione Formato  
D'Anna Moscariello MZ.pdf

accesso aperto

Descrizione: Articolo
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 197.72 kB
Formato Adobe PDF
197.72 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/577089
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact