Italy ranks among the leading countries in photovoltaic (PV) adoption, having installed 6.80 GW of new PV capacity, bringing the total installed capacity to 37.09 GW in 2024. However, this widespread deployment also leads to a substantial amount of PV waste as systems reach the end of their lifespan. This study aims to estimate the volume of PV waste expected to be generated in Italy due to the decommissioning of end-of-life (EoL) PV panels and to explore landfill and recovery scenarios that could offer the most sustainable management strategies. The findings indicate that 4520 kilotonnes of PV waste will be produced in Italy between 2030 and 2050. Of this, a significant share consists of glass (2704.9 kilotonnes) and aluminum (762.1 kilotonnes). Additionally, Italy will produce 174.6 kt of landfill waste in 2036. In 2049 and 2050, the total composition recovery is predicted to reach 571 kt and 604.7 kt, respectively. To summarize, the main contributions of this work include (1) projections of the EoL of crystalline silicon PV waste by material quantity for 2050, (2) the economic value share of PV module materials based on waste estimates and recovery, and (3) the estimation of the EoL solar compositions generated by 2050.

The Solar Waste Challenge: Estimating and Managing End-of-Life Photovoltaic Panels in Italy

Soroush Khakpour;Francesco Nocera;Alberta Latteri;
2025-01-01

Abstract

Italy ranks among the leading countries in photovoltaic (PV) adoption, having installed 6.80 GW of new PV capacity, bringing the total installed capacity to 37.09 GW in 2024. However, this widespread deployment also leads to a substantial amount of PV waste as systems reach the end of their lifespan. This study aims to estimate the volume of PV waste expected to be generated in Italy due to the decommissioning of end-of-life (EoL) PV panels and to explore landfill and recovery scenarios that could offer the most sustainable management strategies. The findings indicate that 4520 kilotonnes of PV waste will be produced in Italy between 2030 and 2050. Of this, a significant share consists of glass (2704.9 kilotonnes) and aluminum (762.1 kilotonnes). Additionally, Italy will produce 174.6 kt of landfill waste in 2036. In 2049 and 2050, the total composition recovery is predicted to reach 571 kt and 604.7 kt, respectively. To summarize, the main contributions of this work include (1) projections of the EoL of crystalline silicon PV waste by material quantity for 2050, (2) the economic value share of PV module materials based on waste estimates and recovery, and (3) the estimation of the EoL solar compositions generated by 2050.
2025
solar photovoltaic; solar PV waste; Italy; end-of-life photovoltaic modules
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/669429
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact