This study aimed to evaluate the antimicrobial activity of both cells, and cell-free supernatants (CFS) of 7 selected lactic acid bacteria (LAB) strains belonging to Limosilactobacillus fermentum (4 strains), Lacticaseibacillus paracasei (1 strain), Lacticaseibacillus rhamnosus (1 strain), and Enterococcus faecium (1 strain) species, against Listeria monocytogenes, Escherichia coli, Salmonella Typhimurium, Pseudomonas aeruginosa and Staphylococcus aureus, by both the agar-well diffusion and co-culture methods. In addition, probiotic and safety traits were also detected. Great variability was detected on antimicrobial effects, whereas all tested strains were found sensitive to most of the tested antibiotics, and without any DNase, gelatinase, or hemolytic activity. Moreover, strains showed excellent survival in acidic conditions and exhibited tolerance to pepsin and bile salts. Based on the in vitro results, the CFSs of two selected L. fermentum strains were applied, in a mixed solution, as bio-preservative into minimally processed pomegranate arils, inoculated with a cocktail of L. monocytogenes and E. coli. Samples, packaged in an ordinary atmosphere, were analyzed during refrigerated storage, for up to 12 days, for physicochemical (as weight loss, texture, color, pH, total soluble solids and organic acid content) and for microbiological traits. Results revealed the effectiveness of CFS, up to 12 days, in reducing weight loss and microbial growth, without any significant effect on texture, total soluble solid content and color, found comparable to the acid citric treatment, highlighting the multi-functional potential of selected probiotic strains.

Multi-Functional Potential of Lactic Acid Bacteria Strains and Antimicrobial Effects in Minimally Processed Pomegranate (Punica granatum L. cv Jolly Red) Arils.

Russo, N.
;
Randazzo, C. L.;Caggia, C.;
2022-01-01

Abstract

This study aimed to evaluate the antimicrobial activity of both cells, and cell-free supernatants (CFS) of 7 selected lactic acid bacteria (LAB) strains belonging to Limosilactobacillus fermentum (4 strains), Lacticaseibacillus paracasei (1 strain), Lacticaseibacillus rhamnosus (1 strain), and Enterococcus faecium (1 strain) species, against Listeria monocytogenes, Escherichia coli, Salmonella Typhimurium, Pseudomonas aeruginosa and Staphylococcus aureus, by both the agar-well diffusion and co-culture methods. In addition, probiotic and safety traits were also detected. Great variability was detected on antimicrobial effects, whereas all tested strains were found sensitive to most of the tested antibiotics, and without any DNase, gelatinase, or hemolytic activity. Moreover, strains showed excellent survival in acidic conditions and exhibited tolerance to pepsin and bile salts. Based on the in vitro results, the CFSs of two selected L. fermentum strains were applied, in a mixed solution, as bio-preservative into minimally processed pomegranate arils, inoculated with a cocktail of L. monocytogenes and E. coli. Samples, packaged in an ordinary atmosphere, were analyzed during refrigerated storage, for up to 12 days, for physicochemical (as weight loss, texture, color, pH, total soluble solids and organic acid content) and for microbiological traits. Results revealed the effectiveness of CFS, up to 12 days, in reducing weight loss and microbial growth, without any significant effect on texture, total soluble solid content and color, found comparable to the acid citric treatment, highlighting the multi-functional potential of selected probiotic strains.
2022
post-biotics
cell-free supernatant
ready-to-eat fresh fruits
functional foods
File in questo prodotto:
File Dimensione Formato  
Ben Farhat microorganisms-10-01876-v2.pdf

accesso aperto

Descrizione: Articolo
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.69 MB
Formato Adobe PDF
1.69 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/540577
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact