The aim of this short paper is to show that some assumptions in Guarnotta et al. (Adv Nonlinear Anal 11:741--756, 2022) can be relaxed and even dropped when looking for weak solutions instead of strong ones. This improvement is a consequence of two results concerning gradient terms: an $L^\infty$ estimate, which exploits nonlinear potential theory, and a compactness result, based on the classical Riesz-Fréchet-Kolmogorov theorem.

A note on gradient estimates for p-Laplacian equations

Guarnotta, Umberto
;
Marano, Salvatore A.
2023-01-01

Abstract

The aim of this short paper is to show that some assumptions in Guarnotta et al. (Adv Nonlinear Anal 11:741--756, 2022) can be relaxed and even dropped when looking for weak solutions instead of strong ones. This improvement is a consequence of two results concerning gradient terms: an $L^\infty$ estimate, which exploits nonlinear potential theory, and a compactness result, based on the classical Riesz-Fréchet-Kolmogorov theorem.
2023
a priori estimates, compactness, convection terms, strong solutions
File in questo prodotto:
File Dimensione Formato  
s40574-023-00371-x.pdf

accesso aperto

Licenza: Creative commons
Dimensione 280.58 kB
Formato Adobe PDF
280.58 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/565269
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact