Multiple sclerosis is an autoimmune inflammatory disease that affects the central nervous system through chronic demyelination and loss of oligodendrocytes. Since the relapsing-remitting form is the most prevalent, relapse-reducing therapies are a primary choice for specialists. Universal Immune System Simulator is an agent-based model that simulates the human immune system dynamics under physiological conditions and during several diseases, including multiple sclerosis. In this work, we extended the UISS-MS disease layer by adding two new treatments, i.e., cladribine and ocrelizumab, to show that UISS-MS can be potentially used to predict the effects of any existing or newly designed treatment against multiple sclerosis. To retrospectively validate UISS-MS with ocrelizumab and cladribine, we extracted the clinical and MRI data from patients included in two clinical trials, thus creating specific cohorts of digital patients for predicting and validating the effects of the considered drugs. The obtained results mirror those of the clinical trials, demonstrating that UISS-MS can correctly simulate the mechanisms of action and outcomes of the treatments. The successful retrospective validation concurred to confirm that UISS-MS can be considered a digital twin solution to be used as a support system to inform clinical decisions and predict disease course and therapeutic response at a single patient level.
Moving forward through the in silico modeling of multiple sclerosis: Treatment layer implementation and validation
Maleki A.;Crispino E.;Di Salvatore V.;Chiacchio M. A.;Russo G.;Pappalardo F.
2023-01-01
Abstract
Multiple sclerosis is an autoimmune inflammatory disease that affects the central nervous system through chronic demyelination and loss of oligodendrocytes. Since the relapsing-remitting form is the most prevalent, relapse-reducing therapies are a primary choice for specialists. Universal Immune System Simulator is an agent-based model that simulates the human immune system dynamics under physiological conditions and during several diseases, including multiple sclerosis. In this work, we extended the UISS-MS disease layer by adding two new treatments, i.e., cladribine and ocrelizumab, to show that UISS-MS can be potentially used to predict the effects of any existing or newly designed treatment against multiple sclerosis. To retrospectively validate UISS-MS with ocrelizumab and cladribine, we extracted the clinical and MRI data from patients included in two clinical trials, thus creating specific cohorts of digital patients for predicting and validating the effects of the considered drugs. The obtained results mirror those of the clinical trials, demonstrating that UISS-MS can correctly simulate the mechanisms of action and outcomes of the treatments. The successful retrospective validation concurred to confirm that UISS-MS can be considered a digital twin solution to be used as a support system to inform clinical decisions and predict disease course and therapeutic response at a single patient level.File | Dimensione | Formato | |
---|---|---|---|
Moving forward through the in silico modeling of multiple sclerosis.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
1.82 MB
Formato
Adobe PDF
|
1.82 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.