The aim of this study was to explore the thermal properties of epoxy-acrylate blends for the liquid crystal display (LCD) 3D printing technique. Starting from an epoxy-acrylate blend with a ratio of epoxy to acrylate of 50:50, the effect of adding a reactive monofunctional epoxy diluent was evaluated. The diluent was a resin composed by oxirane, mono[(C12-14 alkyl) methyl] derivatives selected for its low viscosity (i.e., 1.8 Poise) at room temperature and its reactivity. The diluent content varied from 15 to 25 wt% and, for all the formulation, double curing cycles, where thermal curing followed photocuring, were studied. The effect of different curing temperatures was also evaluated. The control of the diluent content and of the curing temperature allowed tailoring of the thermomechanical resin properties while improving the resin's processability. The glass transition ranged from 115.4 degrees C to 90.8 degrees C depending on the combination of diluent content and post-curing temperature. The resin developed displayed a faster processing time tested on a reference part with printing time of 4 h and 20 min that was much lower than the printing times (7 and 16 h) observed for the starting formulations.

Epoxy-Based Blend Formulation for Dual Curing in Liquid Crystal Display 3D Printing: A Study on Thermomechanical Properties Variation for Enhanced Printability

Tosto, Claudio
Primo
Writing – Original Draft Preparation
;
Saitta, Lorena
Secondo
Writing – Original Draft Preparation
;
Latteri, Alberta
Penultimo
Funding Acquisition
;
Cicala, Gianluca
Ultimo
Supervision
2024-01-01

Abstract

The aim of this study was to explore the thermal properties of epoxy-acrylate blends for the liquid crystal display (LCD) 3D printing technique. Starting from an epoxy-acrylate blend with a ratio of epoxy to acrylate of 50:50, the effect of adding a reactive monofunctional epoxy diluent was evaluated. The diluent was a resin composed by oxirane, mono[(C12-14 alkyl) methyl] derivatives selected for its low viscosity (i.e., 1.8 Poise) at room temperature and its reactivity. The diluent content varied from 15 to 25 wt% and, for all the formulation, double curing cycles, where thermal curing followed photocuring, were studied. The effect of different curing temperatures was also evaluated. The control of the diluent content and of the curing temperature allowed tailoring of the thermomechanical resin properties while improving the resin's processability. The glass transition ranged from 115.4 degrees C to 90.8 degrees C depending on the combination of diluent content and post-curing temperature. The resin developed displayed a faster processing time tested on a reference part with printing time of 4 h and 20 min that was much lower than the printing times (7 and 16 h) observed for the starting formulations.
2024
LCD printing
additive manufacturing
epoxy resin blends
photocurable acrylate
printability
thermal curing performance
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/593910
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact