Nature is a remarkable source of inspiration for developing sustainable and eco-friendly synthetic procedures. In recent years, the synthesis of cyclic carbonates has garnered significant attention due to their versatile applications in various fields, including materials science, pharmaceuticals, and green chemistry. Drawing inspiration from nature, researchers have explored innovative synthetic routes that mimic biological processes to produce cyclic carbonates efficiently and sustainably. This article reviews nature-inspired synthetic procedures for cyclic carbonate formation, highlighting the key strategies and principles employed. Through biomimicry, researchers aim to harness the efficiency and selectivity observed in biological systems to develop greener and more sustainable methods for cyclic carbonates synthesis. Integrating bio-inspired strategies offers opportunities for improving synthetic efficiency and contributes to reducing the environmental impact associated with traditional chemical processes. This review underscores the potential of nature-inspired approaches in advancing the field of cyclic carbonate synthesis toward more sustainable and environmentally benign practices, focusing on recent literature.

Learning Strategies from Nature's Blueprint to Cyclic Carbonate Synthesis

Saccullo, Erika
Primo
;
Patamia, Vincenzo
Secondo
;
Zagni, Chiara;Rescifina, Antonio;Floresta, Giuseppe
Ultimo
2024-01-01

Abstract

Nature is a remarkable source of inspiration for developing sustainable and eco-friendly synthetic procedures. In recent years, the synthesis of cyclic carbonates has garnered significant attention due to their versatile applications in various fields, including materials science, pharmaceuticals, and green chemistry. Drawing inspiration from nature, researchers have explored innovative synthetic routes that mimic biological processes to produce cyclic carbonates efficiently and sustainably. This article reviews nature-inspired synthetic procedures for cyclic carbonate formation, highlighting the key strategies and principles employed. Through biomimicry, researchers aim to harness the efficiency and selectivity observed in biological systems to develop greener and more sustainable methods for cyclic carbonates synthesis. Integrating bio-inspired strategies offers opportunities for improving synthetic efficiency and contributes to reducing the environmental impact associated with traditional chemical processes. This review underscores the potential of nature-inspired approaches in advancing the field of cyclic carbonate synthesis toward more sustainable and environmentally benign practices, focusing on recent literature.
2024
Biomimicry
Cyclic carbonates
Green chemistry
Nature-inspired chemistry
Sustainable synthesis
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/647291
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact