This study presents the design, fabrication, and experimental validation of a two-finger robotic gripper featuring a 135° V-shaped fingertip profile tailored for lightweight waste collection in laboratory-scale environmental robotics. The gripper was developed with a strong emphasis on cost-effectiveness and manufacturability, utilizing a desktop 3D printer and off-the-shelf servomotors. A four-bar linkage mechanism enables parallel jaw motion and ensures stable surface contact during grasping, achieving a maximum opening range of 71.5 mm to accommodate common cylindrical objects. To validate structural integrity, finite element analysis (FEA) was conducted under a 0.6 kg load, yielding a safety factor of 3.5 and a peak von Mises stress of 12.75 MPa—well below the material yield limit of PLA. Experimental testing demonstrated grasp success rates of up to 80 percent for typical waste items, including bottles, disposable cups, and plastic bags. While the gripper performs reliably with rigid and semi-rigid objects, further improvements are needed for handling highly deformable materials such as thin films or soft bags. The proposed design offers significant advantages in terms of rapid prototyping (a print time of approximately 10 h), modularity, and low manufacturing cost (with an estimated in-house material cost of USD 20 to 40). It provides a practical and accessible solution for small-scale robotic waste-collection tasks and serves as a foundation for future developments in affordable, application-specific grippers.

Design and Experimental Validation of a 3D-Printed Two-Finger Gripper with a V-Shaped Profile for Lightweight Waste Collection

Habibi M.;Sutera G.
;
Guastella D. C.;Muscato G.
2025-01-01

Abstract

This study presents the design, fabrication, and experimental validation of a two-finger robotic gripper featuring a 135° V-shaped fingertip profile tailored for lightweight waste collection in laboratory-scale environmental robotics. The gripper was developed with a strong emphasis on cost-effectiveness and manufacturability, utilizing a desktop 3D printer and off-the-shelf servomotors. A four-bar linkage mechanism enables parallel jaw motion and ensures stable surface contact during grasping, achieving a maximum opening range of 71.5 mm to accommodate common cylindrical objects. To validate structural integrity, finite element analysis (FEA) was conducted under a 0.6 kg load, yielding a safety factor of 3.5 and a peak von Mises stress of 12.75 MPa—well below the material yield limit of PLA. Experimental testing demonstrated grasp success rates of up to 80 percent for typical waste items, including bottles, disposable cups, and plastic bags. While the gripper performs reliably with rigid and semi-rigid objects, further improvements are needed for handling highly deformable materials such as thin films or soft bags. The proposed design offers significant advantages in terms of rapid prototyping (a print time of approximately 10 h), modularity, and low manufacturing cost (with an estimated in-house material cost of USD 20 to 40). It provides a practical and accessible solution for small-scale robotic waste-collection tasks and serves as a foundation for future developments in affordable, application-specific grippers.
2025
environmental robotics
kinematic analysis
prototype testing
robotic waste collection
structural simulation
two-finger gripper
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/683010
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact