Olive mill wastewater (OMWW) represents a by–product but also a source of biologically active compounds, and their recycling is a relevant strategy to recover income and to reduce envi ronmental impact. The objective of the present study was to obtain a new functional beverage with a health–promoting effect starting from OMWW. Fresh OMWW were pre–treated through filtration and/or microfiltration and subjected to fermentation using strains belonging to Lactiplantibacillus plantarum, Candida boidinii and Wickerhamomyces anomalus. During fermentation, phenolic content and hydroxytyrosol were monitored. Moreover, the biological assay of microfiltered fermented OMWW was detected versus tumor cell lines and as anti-inflammatory activity. The results showed that in microfiltered OMWW, fermentation was successfully conducted, with the lowest pH values reached after 21 days. In addition, in all fermented samples, an increase in phenol and organic acid contents was detected. Particularly, in samples fermented with L. plantarum and C. boidinii in single and combined cultures, the concentration of hydroxytyrosol reached values of 925.6, 902.5 and 903.5 mg/L, respectively. Moreover, biological assays highlighted that fermentation determines an in crease in the antioxidant and anti–inflammatory activity of OMWW. Lastly, an increment in the active permeability on Caco-2 cell line was also revealed. In conclusion, results of the present study confirmed t

Olive mill wastewater fermented with microbial pools as a new potential functional beverage.

Russo N.;Caggia C.
;
Randazzo C. L.;
2023-01-01

Abstract

Olive mill wastewater (OMWW) represents a by–product but also a source of biologically active compounds, and their recycling is a relevant strategy to recover income and to reduce envi ronmental impact. The objective of the present study was to obtain a new functional beverage with a health–promoting effect starting from OMWW. Fresh OMWW were pre–treated through filtration and/or microfiltration and subjected to fermentation using strains belonging to Lactiplantibacillus plantarum, Candida boidinii and Wickerhamomyces anomalus. During fermentation, phenolic content and hydroxytyrosol were monitored. Moreover, the biological assay of microfiltered fermented OMWW was detected versus tumor cell lines and as anti-inflammatory activity. The results showed that in microfiltered OMWW, fermentation was successfully conducted, with the lowest pH values reached after 21 days. In addition, in all fermented samples, an increase in phenol and organic acid contents was detected. Particularly, in samples fermented with L. plantarum and C. boidinii in single and combined cultures, the concentration of hydroxytyrosol reached values of 925.6, 902.5 and 903.5 mg/L, respectively. Moreover, biological assays highlighted that fermentation determines an in crease in the antioxidant and anti–inflammatory activity of OMWW. Lastly, an increment in the active permeability on Caco-2 cell line was also revealed. In conclusion, results of the present study confirmed t
2023
Olive mill wastewater (OMWW) represents a by–product but also a source of biologically active compounds, and their recycling is a relevant strategy to recover income and to reduce envi ronmental impact. The objective of the present study was to obtain a new functional beverage with a health–promoting effect starting from OMWW. Fresh OMWW were pre–treated through filtration and/or microfiltration and subjected to fermentation using strains belonging to Lactiplantibacillus plantarum, Candida boidinii and Wickerhamomyces anomalus. During fermentation, phenolic content and hydroxytyrosol were monitored. Moreover, the biological assay of microfiltered fermented OMWW was detected versus tumor cell lines and as anti-inflammatory activity. The results showed that in microfiltered OMWW, fermentation was successfully conducted, with the lowest pH values reached after 21 days. In addition, in all fermented samples, an increase in phenol and organic acid contents was detected. Particularly, in samples fermented with L. plantarum and C. boidinii in single and combined cultures, the concentration of hydroxytyrosol reached values of 925.6, 902.5 and 903.5 mg/L, respectively. Moreover, biological assays highlighted that fermentation determines an in crease in the antioxidant and anti–inflammatory activity of OMWW. Lastly, an increment in the active permeability on Caco-2 cell line was also revealed. In conclusion, results of the present study confirmed that the process applied here represents an effective strategy to achieve a new functional beverage
File in questo prodotto:
File Dimensione Formato  
molecules-28-00646.pdf

accesso aperto

Descrizione: Articolo
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 658.58 kB
Formato Adobe PDF
658.58 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/547164
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 3
social impact