Autonomous systems operate in environments that can be observed only through noisy measurements. Thus, controllers should compute actions based on their beliefs about the surroundings. In these settings, we design a Model Predictive Controller (MPC) based on a continuous-state Linear Time-Invariant (LTI) system model operating in a discrete-state environment described by a Hidden Markov Model (HMM). Environment constraints are modeled as chance constraints and environment observations can be asynchronous with system state measurements and controller updates. We show how to approximate the solution of the MPC problem defined over the space of feedback policies by optimizing over a trajectory tree, where each branch is associated with an environment measurement. The proposed approach guarantees chance constraint satisfaction and recursive feasibility. Finally, we test the proposed strategy on navigation examples in partially observable environments, where the proposed MPC guarantees chance constraint satisfaction.

Model Predictive Control in Partially Observable Multi-Modal Discrete Environments

Guastella D. C.
;
Muscato G.;
2023-01-01

Abstract

Autonomous systems operate in environments that can be observed only through noisy measurements. Thus, controllers should compute actions based on their beliefs about the surroundings. In these settings, we design a Model Predictive Controller (MPC) based on a continuous-state Linear Time-Invariant (LTI) system model operating in a discrete-state environment described by a Hidden Markov Model (HMM). Environment constraints are modeled as chance constraints and environment observations can be asynchronous with system state measurements and controller updates. We show how to approximate the solution of the MPC problem defined over the space of feedback policies by optimizing over a trajectory tree, where each branch is associated with an environment measurement. The proposed approach guarantees chance constraint satisfaction and recursive feasibility. Finally, we test the proposed strategy on navigation examples in partially observable environments, where the proposed MPC guarantees chance constraint satisfaction.
2023
Markov processes
Predictive control for linear systems
uncertain systems
File in questo prodotto:
File Dimensione Formato  
Model_Predictive_Control_in_Partially_Observable_Multi-Modal_Discrete_Environments.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 769.49 kB
Formato Adobe PDF
769.49 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/570269
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact