BACKGROUND: In recent decades the demand for freshwater has drastically increased as a consequence of population growth, economic development, climate change and pollution. Therefore, any strategy for wastewater treatment can play a role in alleviating the pressure on freshwater sources. RESULTS: In the present study an autochthonous microalgal pool (MP), isolated from a constructed wetland, was proposed as an alternative to the secondary treatment of an urban wastewater treatment system. The MP removal efficacy was compared to those obtained using Chlorella vulgaris and Scenedesmus quadricauda, against E. coli. Results exhibited a comparable removal efficacy and after 2 days, in samples inoculated with E. coli at lower density, S. quadricauda and C. vulgaris induced a decrease of 2.0 units Log and the autochthonous MP of 1.8 units Log, whereas in samples with E. coli at higher density the bacteria were reduced 2.8, 3.4 and 2.0 units Log by S. quadricauda, C. vulgaris and the autochthonous MP, respectively. Moreover, the identification of microalgal strains isolated from the MP revealed the presence of Klebsormidium sp. K39, C. vulgaris, Tetradesmus obliquus and S. quadricauda. Although the MP composition remained quite constant, at the end of the treatment, a different distribution among the microalgal species was observed with Klebsormidium sp. K39 found as dominant. CONCLUSION: The microalgal-based wastewater treatment appears as a valuable alternative, although further investigations, based on 'omics' approaches, could be applied to better explore any fluctuation within the MP species composition in an in situ trial. (c) 2024 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

An indigenous microalgal pool containing Klebsormidium sp. K39 as a stable and efficacious biotechnological strategy for Escherichia coli removal in urban wastewater treatment

Occhipinti P. S.;Russo N.;Pino A.;Randazzo C. L.;Caggia C.
2024-01-01

Abstract

BACKGROUND: In recent decades the demand for freshwater has drastically increased as a consequence of population growth, economic development, climate change and pollution. Therefore, any strategy for wastewater treatment can play a role in alleviating the pressure on freshwater sources. RESULTS: In the present study an autochthonous microalgal pool (MP), isolated from a constructed wetland, was proposed as an alternative to the secondary treatment of an urban wastewater treatment system. The MP removal efficacy was compared to those obtained using Chlorella vulgaris and Scenedesmus quadricauda, against E. coli. Results exhibited a comparable removal efficacy and after 2 days, in samples inoculated with E. coli at lower density, S. quadricauda and C. vulgaris induced a decrease of 2.0 units Log and the autochthonous MP of 1.8 units Log, whereas in samples with E. coli at higher density the bacteria were reduced 2.8, 3.4 and 2.0 units Log by S. quadricauda, C. vulgaris and the autochthonous MP, respectively. Moreover, the identification of microalgal strains isolated from the MP revealed the presence of Klebsormidium sp. K39, C. vulgaris, Tetradesmus obliquus and S. quadricauda. Although the MP composition remained quite constant, at the end of the treatment, a different distribution among the microalgal species was observed with Klebsormidium sp. K39 found as dominant. CONCLUSION: The microalgal-based wastewater treatment appears as a valuable alternative, although further investigations, based on 'omics' approaches, could be applied to better explore any fluctuation within the MP species composition in an in situ trial. (c) 2024 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
2024
Klebsormidium sp. K39
microalgae
phycoremediation
urban wastewater treatment
File in questo prodotto:
File Dimensione Formato  
Occhipinti et al., 2024.pdf

accesso aperto

Descrizione: Articolo
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.21 MB
Formato Adobe PDF
1.21 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/641354
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact