The global surge in the elderly population has increased the awareness of their needs. Supporting mobility and perception is vital to improving their quality of life. This project introduces a prototype of an active smart walker with obstacle avoidance and assistive navigation features to aid the elderly. The system can plan routes and move in familiar environments, adjusting its actions based on the user’s intentions. To accomplish this, a shared control approach employs a force–torque sensor to gauge the user’s will. The proposed system has been tested in multiple scenarios, replicating a common use in real-world environments.

Adaptive Navigation of a Smart Walker with Shared Control

Giuseppe Sutera;Dario Calogero Guastella;Francesco Cancelliere;Giovanni Muscato
2025-01-01

Abstract

The global surge in the elderly population has increased the awareness of their needs. Supporting mobility and perception is vital to improving their quality of life. This project introduces a prototype of an active smart walker with obstacle avoidance and assistive navigation features to aid the elderly. The system can plan routes and move in familiar environments, adjusting its actions based on the user’s intentions. To accomplish this, a shared control approach employs a force–torque sensor to gauge the user’s will. The proposed system has been tested in multiple scenarios, replicating a common use in real-world environments.
2025
assistive robots
obstacle avoidance
ROS
shared control
smart walkers
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/675150
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact