The use of β-glucosidase positive strains, as tailored-starter cultures for table olives fermentation, is a useful biotechnological tool applied to accelerate the debittering process. Nowadays, strains belonging to Lactiplantibacillus plantarum species are selected for their high versatility and tolerance to stress conditions. The present study investigated the effect of different stress factors (pH, temperature and NaCl) on growth and on oleuropein-degrading abilities of selected L. plantarum strains. In addition, the presence of the beta-glucosidase gene was investigated by applying a PCR based approach. Results revealed that, overall, the performances of the tested strains appeared to be robust toward the different stressors. However, the temperature of 16 °C significantly affected the growth performance of the strains both singularly and in combination with other stressing factors since it prolongs the latency phase and reduces the maximum growth rate of strains. Similarly, the oleuropein degradation was mainly affected by the low temperature, especially in presence of low salt content. Despite all strains displayed the ability to reduce the oleuropein content, the beta-glucosidase gene was detected in five out of the nine selected strains, demonstrating that the ability to hydrolyze the oleuropein is not closely related to the presence of beta-glucosidase. Data of the present study suggest that is extremely important to test the technological performances of strains at process conditions in order to achieve a good selection of tailored starter cultures for table olives.

Effects of different stress parameters on growth and on oleuropein-degrading abilities of Lactiplantibacillus plantarum strains selected as tailored starter cultures for naturally table olives

Vaccalluzzo A.
Primo
;
Pino A.
Secondo
;
Foti P.;Caggia C.
Penultimo
;
Randazzo C. L.
Ultimo
2020-01-01

Abstract

The use of β-glucosidase positive strains, as tailored-starter cultures for table olives fermentation, is a useful biotechnological tool applied to accelerate the debittering process. Nowadays, strains belonging to Lactiplantibacillus plantarum species are selected for their high versatility and tolerance to stress conditions. The present study investigated the effect of different stress factors (pH, temperature and NaCl) on growth and on oleuropein-degrading abilities of selected L. plantarum strains. In addition, the presence of the beta-glucosidase gene was investigated by applying a PCR based approach. Results revealed that, overall, the performances of the tested strains appeared to be robust toward the different stressors. However, the temperature of 16 °C significantly affected the growth performance of the strains both singularly and in combination with other stressing factors since it prolongs the latency phase and reduces the maximum growth rate of strains. Similarly, the oleuropein degradation was mainly affected by the low temperature, especially in presence of low salt content. Despite all strains displayed the ability to reduce the oleuropein content, the beta-glucosidase gene was detected in five out of the nine selected strains, demonstrating that the ability to hydrolyze the oleuropein is not closely related to the presence of beta-glucosidase. Data of the present study suggest that is extremely important to test the technological performances of strains at process conditions in order to achieve a good selection of tailored starter cultures for table olives.
2020
Beta-glucosidase, Growth ability, Low salt content, Oleuropeinolytic activity, Table olives fermentation
File in questo prodotto:
File Dimensione Formato  
microorganisms-2020.pdf

accesso aperto

Descrizione: Articolo
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 634.89 kB
Formato Adobe PDF
634.89 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/499315
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 14
social impact