This study investigated the effect of two supplementation levels of zinc glycinate (ZnGly) on performance, carcass characteristics, and meat quality of growing-finishing pigs. Thirty pigs (bodyweight: 61 ± 4.0 kg) were assigned to three treatments and fed ad libitum for 56 days a diet supplemented with 0 (control), 45 (Zn45), or 100 mg/kg (Zn100) of ZnGly. The highest ZnGly supplementation lowered the average daily gain (P = 0.031); while, cold carcass weight did not differ between treatments. Both ZnGly levels reduced carcass chill loss (P < 0.001). Micromineral content, color stability, and fatty acid profile of meat were not altered by ZnGly. Superoxide dismutase activity was lowered by Zn45 compared to control (P = 0.007); while, catalase activity was enhanced by Zn100 (P = 0.003). Although ZnGly supplementation did not influence lipid oxidation in raw meat and in meat homogenates incubated with pro-oxidant catalysts, Zn45 limited lipid oxidation in cooked meat (P = 0.037). Our results demonstrated that supplementing pigs with 45 mg/kg of ZnGly could improve the oxidative stability of pork subjected to strong pro-oxidant conditions, but this effect needs to be further elucidated.

Effect of different levels of organic zinc supplementation on pork quality

Natalello A.
Primo
;
Luciano G.
;
Mangano F.;Biondi L.
Penultimo
;
Priolo A.
Ultimo
2022-01-01

Abstract

This study investigated the effect of two supplementation levels of zinc glycinate (ZnGly) on performance, carcass characteristics, and meat quality of growing-finishing pigs. Thirty pigs (bodyweight: 61 ± 4.0 kg) were assigned to three treatments and fed ad libitum for 56 days a diet supplemented with 0 (control), 45 (Zn45), or 100 mg/kg (Zn100) of ZnGly. The highest ZnGly supplementation lowered the average daily gain (P = 0.031); while, cold carcass weight did not differ between treatments. Both ZnGly levels reduced carcass chill loss (P < 0.001). Micromineral content, color stability, and fatty acid profile of meat were not altered by ZnGly. Superoxide dismutase activity was lowered by Zn45 compared to control (P = 0.007); while, catalase activity was enhanced by Zn100 (P = 0.003). Although ZnGly supplementation did not influence lipid oxidation in raw meat and in meat homogenates incubated with pro-oxidant catalysts, Zn45 limited lipid oxidation in cooked meat (P = 0.037). Our results demonstrated that supplementing pigs with 45 mg/kg of ZnGly could improve the oxidative stability of pork subjected to strong pro-oxidant conditions, but this effect needs to be further elucidated.
2022
Antioxidant capacity
Antioxidant enzymes
Fat-soluble vitamins
Intramuscular fatty acids
Lipid oxidation
Meat shelf-life
File in questo prodotto:
File Dimensione Formato  
Natalello et al 2022 - Meat Science.pdf

accesso aperto

Descrizione: Articolo
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 879.2 kB
Formato Adobe PDF
879.2 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/519155
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
social impact